Abbasian-Naghneh, S., Tehrani, R., & Tamimi, M. (2019). The Effect of JCPOA on the Network Behavior Analysis of Tehran Stock Exchange Indexes. Advances in Mathematical Finance and Applications, (Articles in Press).
Baghli, M. (2006). A model-free characterization of causality. Economics Letters, 91(3), 380-388.
Bhattacharjee, B., Shafi, M., & Acharjee, A. (2017). Network mining based elucidation of the dynamics of cross-market clustering and connectedness in the Asian region: An MST and hierarchical clustering approach. Journal of King Saud University-Computer and Information Sciences.
Bollobas, B. (2012). Graph theory: an introductory course, (Vol. 63). Springer Science & Business Media.
Bonanno, G., Caldarelli, G., Lillo, F., & Mantegna, R. N. (2003). The topology of correlation-based minimal spanning trees in real and model markets. Physical Review E, 68(4), 046130.
Bonanno, G., Caldarelli, G., Lillo, F., & Mantegna, R. N. (2003). The topology of correlation-based minimal spanning trees in real and model markets. Physical Review E, 68(4), 046130.
Charness, G., Feri, F., Meléndez‐Jiménez, M. A., & Sutter, M. (2014). Experimental games on networks: Underpinnings of behavior and equilibrium selection. Econometrica, 82(5), 1615-1670.
Chi, K. T., Liu, J., & Lau, F. C. (2010). A network perspective of the stock market. Journal of Empirical Finance, 17(4), 659-667.
Coletti, P. (2016). Comparing the minimum spanning trees of the Italian stock market using returns and volumes. Physica A: Statistical Mechanics and its Applications, 463, 246-261.
Coronnello, C., Tumminello, M., Lillo, F., Micciche, S., & Mantegna, R. N. (2005). Sector identification in a set of stock return time series traded at the London Stock Exchange. arXiv preprint cond-mat/0508122.
Dabrowski, J., & Pułka, A. (1998). TH Cormen, CE Leiserson, and RL Rivest Introduction to Algorithms. McGraw-Hill, MIT Press, 1990. Discrete Approach to PWL Analog Modeling in VHDL Environment. Analog Integrated Circuits & Signal Processing, 16(2), 91-99.
Eom, C., Oh, G., Jung, W. S., Jeong, H., & Kim, S. (2009). Topological properties of stock networks based on minimal spanning tree and random matrix theory in financial time series. Physica A: Statistical Mechanics and its Applications, 388(6), 900-906.
Eryiğit, M., & Eryiğit, R. (2009). The network structure of cross-correlations among the world market indices. Physica A: Statistical Mechanics and its Applications, 388(17), 3551-3562.
Frenzel, S., & Pompe, B. (2007). Partial mutual information for coupling analysis of multivariate time series. Physical review letters, 99(20), 204101.
Forbes, K. J., & Rigobon, R. (2002). No contagion, only interdependence: measuring stock market comovements. The journal of Finance, 57(5), 2223-2261.
Gałązka, M. (2011). Characteristics of the Polish stock market correlations. International review of financial analysis, 20(1), 1-5.
Gan, S. L., & Djauhari, M. A. (2015). New York Stock Exchange performance: evidence from the forest of multidimensional minimum spanning trees. Journal of Statistical Mechanics: Theory and Experiment, 2015(12), P12005.
Ghanbari, A., Abbasian-Naghneh, S., & Hadavandi, E. (2011). An intelligent load forecasting expert system by the integration of ant colony optimization, genetic algorithms and fuzzy logic. In 2011 IEEE symposium on computational intelligence and data mining (CIDM) (pp. 246-251). IEEE.
Ghanbari, A., Hadavandi, E., & Abbasian-Naghneh, S. (2010). An intelligent ACO-SA approach for short term electricity load prediction. In International Conference on Intelligent Computing (pp. 623-633). Springer, Berlin, Heidelberg.
Heimo, T., Saramäki, J., Onnela, J. P., & Kaski, K. (2007). Spectral and network methods in the analysis of correlation matrices of stock returns. Physica A: Statistical Mechanics and its Applications, 383(1), 147-151.
Huang, W. Q., Zhuang, X. T., & Yao, S. (2009). A network analysis of the Chinese stock market. Physica A: Statistical Mechanics and its Applications, 388(14), 2956-2964.
Hughes, B. (2004). Trees and ultrametric spaces: a categorical equivalence. Advances in Mathematics, 189(1), 148-191.
Jahanshahloo, G. R., & Abbasian-Naghneh, S. (2011a). Data envelopment analysis with imprecise data. Applied mathematical sciences, 5(61-64), 3089-3106.
Jahanshahloo, G. R., Zohrehbandian, M., & Abbasian-Naghneh, S. (2011b). Using interactive multiobjective methods to solve multiple attribute decision-making problems. Australian Journal of Basic and Applied Sciences, 5(9), 298-308.
Ji, Q., & Fan, Y. (2016). Evolution of the world crude oil market integration: A graph theory analysis. Energy Economics, 53, 90-100.
Kantar, E., Deviren, B., & Keskin, M. (2011). The hierarchical structure of Turkey's foreign trade. Physica a: Statistical Mechanics and its Applications, 390(20), 3454-3476.
Majapa, M., & Gossel, S. J. (2016). The topology of the South African stock market network across the 2008 financial crisis. Physica a: Statistical Mechanics and its Applications, 445, 35-47.
Mantegna, R. N. (1999). Hierarchical structure in financial markets. The European Physical Journal B-Condensed Matter and Complex Systems, 11(1), 193-197.
McDonald, M., Suleman, O., Williams, S., Howison, S., & Johnson, N. F. (2005). Detecting a currency’s dominance or dependence using foreign exchange network trees. Physical Review E, 72(4), 046106.
Namaki, A., Raei, R., Asadi, N., & Hajihasani, A. (2019). Analysis of Iran Banking Sector by Multi-Layer Approach. Iranian Journal of Finance, 3(1), 73-89.
Namaki, A., Shirazi, A. H., Raei, R., & Jafari, G. R. (2011). Network analysis of a financial market based on genuine correlation and threshold method. Physica A: Statistical Mechanics and its Applications, 390(21-22), 3835-3841.
Nobi, A., Maeng, S. E., Ha, G. G., & Lee, J. W. (2014). Effects of the global financial crisis on network structure in a local stock market. Physica a: Statistical Mechanics and its Applications, 407, 135-143.
Onnela, J.-P., Chakraborti, A., Kaski, K., Kertesz, J., & Kanto, A. (2003). Dynamics of market correlations: Taxonomy and portfolio analysis. Physical Review E, 68(5), 056110.
Raei, R., Namaki, A., & Vahabi, H. (2019). Analysis of Collective Behavior of Iran Banking Sector by Random Matrix Theory. Iranian Journal of Finance, 3(4), 60-75.
Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4), 581-603.
Sieczka, P., & Hołyst, J. A. (2009). Correlations in commodity markets. Physica a: Statistical Mechanics and its Applications, 388(8), 1621-1630.
Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.
Tabak, B. M., Serra, T. R., & Cajueiro, D. O. (2010). Topological properties of stock market networks: The case of Brazil. Physica a: Statistical Mechanics and its Applications, 389(16), 3240-3249.
Tobin, J. (1969). A general equilibrium approach to monetary theory. Journal of money, credit and banking, 1(1), 15-29.
Tumminello, M., Aste, T., Di Matteo, T., & Mantegna, R. N. (2005). A tool for filtering information in complex systems. Proceedings of the National Academy of Sciences, 102(30), 10421-10426.
Tumminello, M., Lillo, F., & Mantegna, R. N. (2010). Correlation, hierarchies, and networks in financial markets. Journal of Economic Behavior & Organization, 75(1), 40-58.
Wiliński, M., Sienkiewicz, A., Gubiec, T., Kutner, R., & Struzik, Z. (2013). Structural and topological phase transitions on the German Stock Exchange. Physica a: Statistical Mechanics and its Applications, 392(23), 5963-5973.
Yang, C., Zhu, X., Li, Q., Chen, Y., & Deng, Q. (2014). Research on the evolution of stock correlation based on maximal spanning trees. Physica a: Statistical Mechanics and its Applications, 415, 1-18.
You, T., Fiedor, P., & Hołda, A. (2015). Network analysis of the Shanghai stock exchange based on partial mutual information. Journal of Risk and Financial Management, 8(2), 266-284.