

Iranian Journal of Finance

Print ISSN 2676-6337 Online ISSN 2676-6345

Investigating the Importance of Different Companies of Tehran Stock Exchange using Lower Tail Dependency based Interaction Network

Masoome Ramezani

Ph.D. Candidate, Department of Finance, Science and Research Branch, Islamic Azad University, Tehran, Iran. (Email: masoome_ramezani@yahoo.com)

Mohammad Osoolian*

*Corresponding author, Assistant Prof., Department of Finance, Shahid Beheshti University, Tehran, Iran. (Email: m_osoolian@sbu.ac.ir)

Mostafa Zandieh

Prof. of Industrial Engineering, Department of Industrial Management and Information Technology, Faculty of Management and Accounting, Shahid Beheshti University, Tehran, Iran. (Email: m_zandieh@sbu.ac.ir)

Seyed Ali Hosseiny Esfidvajani

Associate Prof., Department of Physics, Shahid Beheshti University, Tehran, Iran. (Email: al_hosseiny@sbu.ac.ir)

Iranian Journal of Finance, 2023, Vol. 7, No.1, pp. 1-20. Publisher: Iran Finance Association doi: https://doi.org/ 10.30699/IJF.2022.313529.1288 Article Type: Original Article © Copyright: Author(s) Type of License: Creative Commons License (CC-BY 4.0) Received: December 25, 2021 Received in revised form: June 12, 2022 Accepted: October 08, 2022 Published online: November 26, 2022

Abstract

Examining the importance and influence of financial market companies is one of the main issues in the field of financial management because sometimes the collapse of a stock exchange company can affect an entire financial market. One systematic way to analyze the significance and impacts of companies is to use complex networks based on Interaction Graphs (IGs). There are different methods for quantifying the edge weight in an IG. In this method, the graph vertices represent the stock exchange companies that are connected by weighted edges (corresponding to the extent to which they relate to each other). In this paper, using the GARCH model (1,1) and the Clayton copula, we obtained the lower tail dependence interaction network of the first 52 companies of the Tehran Stock Exchange in terms of average market value, between June 2017 and October 2020. Then, based on the minimum spanning tree of the interaction network, we divided the companies into different communities. Using this classification, it was observed that the companies of the first group (Food Industry) and the second group (Oil Refinery) have the greatest impact on other companies. We also calculated the central indexes of the minimum spanning tree for each company. According to the results, the companies of the third group (Steel) have the highest average in the central indicators.

Keywords: Interaction network, Minimum Spanning Tree, GARCH Model, Clayton Copula, Lower Tail Dependence.

Introduction

Examining the importance and influence of financial market companies is one of the main issues in the field of financial management. Because sometimes the collapse of a stock exchange company can affect an entire financial market. An example is the collapse of Lehman Brothers Holding, which eventually led to the 2008 global financial crisis. One systematic way to analyze the significance and impacts of companies is to use complex networks based on Interaction Graphs (IGs) (Yang et al., 2020). In this method, the graph vertices represent the stock exchange companies that are connected by weighted edges (corresponding to the extent to which they relate to each other). Converting an IG to a tree in which loops have been removed reduces the complexity of the problem and simplifies system analysis. In this study, we used the Minimum Spanning Tree (MST) to analyze the results.

There are different methods for quantifying the edge weight in an IG. Among these methods, we can mention the Pearson Correlation (PerC) coefficient (Patro et al., 2013; Wiliński et al., 2013) and, Transfer Entropy (TE) (Ardalankia et al., 2020; Kwon & Yang, 2008; Osoolian & Koushki, 2020). Here we use Lower Tail Dependence (LTD) to measure the edge weight in the IG, which is a measure of the coordinated behavior of companies in negative returns (Wang & Xie, 2016). This quantity can be used in portfolio risk management. To calculate LTD, we need models through which we can obtain the marginal and joint Probability Distribution Functions (PDFs) of the returns of companies. Due to the fat-tailed behavior of the return PDF in financial markets (Chakraborti et al., 2011), we have used the GARCH(1,1) model to calculate the marginal PDFs (Lee & Hansen, 1994). To obtain joint PFDs we used the Clayton copula (Wen et al., 2019).

The structure of the present article is as follows: First, we briefly review using IGs in financial market analysis. Next, we have introduced the quantities and models used. Then, the results of the research are presented. And finally, we discuss and conclude the results.

Literature Review

The idea of using IGs in financial market analysis goes back to Mantegna. Using PerC-based IG, he was able to obtain a hierarchical structure for the companies under study. In other words, he was able to use the IG to divide companies into groups that had the same field of activity (Mantegna, 1999).

Bonanno et al. investigated the topological structure of the MST in financial markets. They have shown that for real markets, MST has a structure that cannot be reconstructed from random data, even in the first approximation (Bonanno et al., 2003).

Wiliński et al. have shown that the MST of the Frankfurt Stock Exchange has a unique topological structure (superstar) during the financial crisis between 2007 and 2008 (Wiliński et al., 2013). Therefore, it can be used to predict the occurrence of financial crises. A similar study on the impact of the global financial crisis on the South Korean financial markets IG has been conducted by Nobi et al. (Nobi et al., 2014).

Kwon and Yang have used the TE-based IG to determine the direction of information flow in financial markets. They have shown that information flows from US financial markets to Asian financial markets. They also use the MST to show that the S&P500 market is the primary source of information among financial markets (Kwon & Yang, 2008).

Wang et al. investigated the differences between the PerC-based and Partial Correlation (ParC)-based MST. Based on central indexes, they have shown that the ParC-based MST provides more reliable results than the PerC-based MST (Wang et al., 2018).

Eng-Uthaiwat has shown that the topology of the IG can be used to predict the return of the portfolio (Eng-Uthaiwat, 2018). Peralta and Zareei have also presented a method for the optimal selection of the portfolio using the IG (Peralta & Zareei, 2016).

Research Methodology

The statistical population of this study is the 100 large companies of the Tehran Stock Exchange based on the average market value (https://www.fipiran.ir/). Among them, companies that had more than 3 months of interruption in daily stock exchange transactions were eliminated. Finally, the remaining 52 companies were selected as statistical sample companies. For these companies, the LTD-based IG was drawn. We used the Clayton copula and the GARCH(1,1) model to calculate the LTD. To obtain the parameters of the Clayton copula and the GARCH(1,1) model, we used the Maximum Likelihood Estimation (MLE) method. From the IG, we obtained the MST for simplicity in analyzing the results. Using MST, we divided the studied companies into different groups in terms of dependency. Finally, we calculate the central indexes associated with the MST.

1. Interaction Network Construction

• Lower Tail Dependence

In probability theory, the LTD of a pair of random variables is a measure of their coordinated motion in the tail of the probability distribution. The LTD (λ_l) of a pair of random variables is defined as follows:

$$\lambda_{l} \coloneqq \lim_{q \to 0} \Pr[Y \le F_{Y}^{\leftarrow}(q) | X \le F_{X}^{\leftarrow}(q)], \tag{1}$$

where $F_X^{\leftarrow}(q) = \inf\{x \in \mathbb{R}: F_X(x) \ge q\}$ is the inverse of the Cumulative Distribution Function (CDF) $F_X(x)$.

Similarly, the Upper Tail Dependence (UTL) λ_u is defined as follows:

$$\lambda_{u} = \lim_{q \to 1} \Pr[Y > F_{Y}^{\leftarrow}(q) | X > F_{X}^{\leftarrow}(q)].$$
(2)

• Copula

The joint CDF of several continuously uniform random variables on the set [0,1] is called a Copula. In other words, if $(U_1, U_2, ..., U_d)$ is a random vector with $U_i \sim U[0,1]$, then the copula

C: $[0,1]^d \rightarrow [0,1]$ is defined as follows:

$$C(u_1, u_2, \dots, u_d) \coloneqq \Pr[U_1 \le u_1, U_2 \le u_2, \dots, U_d \le u_d].$$
(3)
See Appendix 1 for details on Copula.

• GARCH(p,q) Model

In economics, the Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH) is a statistical model for time series data. In this model, the time series of the return of a financial institution X_t is given as follows:

$$X_t = e_t \, \sigma_t, \tag{4}$$

$$\sigma_t^2 = \omega + \sum_{i=1}^p \alpha_i X_{t-i}^2 + \sum_{i=1}^q \beta_j \sigma_{t-j}^2,$$
(5)

where $e_t \sim N(0,1)$ (random variable with normal distribution with mean zero and variance one), σ_t^2 is the time-dependent variance, and $\{\omega, \alpha_i, \beta_j\}$ are the free parameters of the model. These parameters can be estimated using the real value of X_t in a time series based on the MLE method.

As can be seen, in this model the variance of the random variable X_t , itself is also a random variable. It can be shown that in the GARCH(1,1) model the mean value of variance is equal to $\frac{\omega}{1-\alpha-\beta}$. In obtaining the time series of variance, we use this value as the starting point of variance. In other words, we put $\sigma_1^2 = \frac{\omega}{1-\alpha-\beta}$.

Maximum Likelihood Estimation

Suppose X is a random variable with PDF $P_X(x|\theta)$ that depends on the parameter θ . If $\{x_1, x_2, ..., x_n\}$ are the results of n experiments on the random variable X, we want to get the best estimate for the value of the parameter θ in terms of these results. In the Maximum Likelihood Estimation method, the best estimate for the parameter θ is the value that maximizes the following likelihood function:

$$L(\theta|x_1, x_2, \dots, x_n) \coloneqq \log[\Pr(x_1, x_2, \dots, x_n|\theta)]$$

=
$$\log[P_X(x_1|\theta)P_X(x_2|\theta) \dots P_X(x_n|\theta)]$$

=
$$\sum_{i=1}^n \underbrace{\log[P_X(x_i|\theta)]}_{=l(\theta|x_i)}.$$
(6)

2. Assortativity

For a graph whose vertices are divided into groups, the assortativity coefficient is a measure that quantifies the quality of the grouping. The value of this coefficient is in the set [0,1]. The closer the value to one indicates more edges in groups relative to edges that connect the groups. The assortativity coefficient of a connected graph is defined as follows:

$$r = \frac{\sum_{i,j} \left(a_{i,j} - \frac{d_i d_j}{2m} \right) f_{i,j}}{\sum_{i,j} \left(d_i \delta_{i,j} - \frac{d_i d_j}{2m} \right) f_{i,j}},\tag{7}$$

where m is the total number of edges, $a_{i,j}$ is the weight of the edge connecting vertices v_i and v_j , d_i is the degree of the vertice v_i , $\delta_{i,j}$ is the Kronecker delta, and, $f_{i,j}$ is a binary function that is equal to one when vertices v_i and v_j belong to the same group otherwise, it is equal to zero.

3. Central Indexes

• Node Degree

The degree of each vertice or node is equal to the number of edges connected to that node. The degree of node v_i is defined as follows:

$$d(v_i) = \sum_j \delta_{i,j}.$$
(8)

Node Strength

The strength of node v_i is defined as follows:

$$s(v_i) = \sum_j \delta_{i,j}(\lambda_l)_{i,j},\tag{9}$$

where $(\lambda_l)_{i,i}$ is the LTD of nodes v_i and v_i .

• Betweenness Centrality

Betweenness centrality is the way to determine the extent to which a node affects the flow of information in a graph. It is often used to find groups that act as bridges from one part of a graph to another. The betweenness centrality of node v_i is defined as follows:

$$c_B(v_i) = \sum_{s,t} \frac{n_{s,t}^{(i)}}{n_{s,t}},$$
(10)

where $n_{s,t}$ is the number of the shortest path from node v_s to the node v_t and, $n_{s,t}^{(i)}$ is the number of the shortest path from node v_s to the node v_t that crosses the node v_i .

• Closeness Centrality

Closeness centrality shows the average distance of that vertex from other vertices. The larger the closeness centrality of a node, the closer that node is to the other nodes. The closeness centrality of node v_i is defined as follows:

$$c_M(v_i) = \frac{k(v_i)}{\sum_j l_{i,j}},\tag{11}$$

where $l_{i,j}$ is the distance of the shortest path from node v_i to node v_j .

Data Analyses

1. Interaction Network Construction

The data used in this study is the time series of the closed stock prices of 52 companies on the Tehran Stock Exchange in the period 2017/6/22 to 2020/10/21. Using this data, we obtained the logarithmic time series of stock prices of companies as follows:

$$X_t = \log S_i - \log S_{i-1}.$$

Then, using the GARCH(1,1) model (Eq.9 and Eq.10), we calculated the time series of variance through the following recursive relation:

$$\sigma_t^2 = \omega + \alpha \, X_{t-1}^2 + \beta \, \sigma_{t-1}^2, \quad t \ge 2$$
⁽¹³⁾

$$\sigma_1 = \frac{\omega}{1 - \alpha - \beta}.$$
(14)

In this model, X_t is a random variable with a normal distribution function

(10)

with a mean of zero and a variance of σ_t^2 , in other words

$$P(x_t) = \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left(-\frac{x_t^2}{2\sigma_t^2}\right).$$
(15)

We used the MLE method to estimate the parameters $\theta = \{\omega, \alpha, \beta\}$. The best estimates for the value of these parameters using the X_t time series are values that maximize the following likelihood function:

$$L(\theta | x_1, x_2, ..., x_n) = \sum_{i=1}^n l(\theta | x_i),$$

$$l(\theta | x_i) = \log P(x_i) = -\frac{1}{2} \log(2\pi\sigma_i^2) - \frac{x_t^2}{2\sigma_t^2}.$$
(16)

The values obtained for these parameters for each company are given in See Appendix 2 for company names. **Error! Reference source not found.**

In this study, we used the Clayton copula to calculate the LTD of two companies. We used the MLE method to obtain the θ parameter of the Clayton copula between the two companies. The likelihood function used to estimate the parameter θ is as follows:

$$L(\theta | x_1, y_1, x_2, y_2, \dots, x_n, y_n) = \sum_{i=1}^n l(\theta | x_i, y_i),$$

$$l(\theta | x_i, y_i) = \log c(u, v) = \log \left[(1+\theta)(uv)^{-1-\theta} (u^{-\theta} + v^{-\theta} - 1)^{-2-\frac{1}{\theta}} \right],$$
(17)

where u and v are the normal CDF for the return of companies X and Y, respectively, and are obtained as follows:

$$u(x_i) = \frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{x_i}{\sqrt{2\sigma_i^2(X)}}\right) \right), \quad v(y_i) = \frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{y_i}{\sqrt{2\sigma_i^2(Y)}}\right) \right),$$

where erf is the error function.

After obtaining the parameter θ for each pair of companies, we obtained

their LTD using Eq.8. The mean, variance, maximum, and, minimum of LTDs are given in Table 1.

Table 1. LTD statistics of companies

Mean	Variance	Min	Max
0.199	0.164	0.000	0.878

To draw the MST, we first converted the LTD matrix to the distance matrix as follows:

$$\mathbf{d}_{i,j} = \sqrt{2\left(1 - (\lambda_l)_{i,j}\right)}.$$
(18)

Figure 1 shows this matrix. The corresponding MST is depicted in Figure 2.

Figure 1. LTD-Distance Matrix

Figure 2. LDT-Based MST

Using the FindGraphCommunities command in Mathematica software, the present companies were divided into different groups on MST. These groups are listed in Table 2 along with the mean value of the LTD of each group.

Group Number	Group Name	Companies	Mean LTD
1	Food Industry	Glucosan (21), Pars Minoo Industrial Co. (32), Iran China Clay Ind. (36), Iran Khodro Investment Development Co. (41), Shahid Ghandi Production Factories Co. (46)	0.556
2	Oil Refinery	Isfahan Oil Refinery (3), Tehran Oil Refinery (4), Bandar Abbas Oil Refinery (5), Parsian Oil and Gas Development Group (8), Tabriz Oil Refinery (14), Civil Pension Fund Investment (22), Khark Petrochemical Co. (45)	0.389

Table 2. Dividing companies into different groups on MST

Investigating the Importance of Different Companies of Tehran...

3	Steel	Mobarakeh Steel Co. (1), Khouzestan Steel Co. (11), Behran Oil Co. (28), Iran Alloy Steel Co. (37), Sepahan Oil Co. (42), South Kaveh Steel Co. (47), Iranian Investment Petrochemical Group (50)	٠.٣٧٩
4	Communication	Mobile Telecommunication Company of Iran (6), Informatics Services Co. (15), Golrang Industrial Group (20), Iran Chemical Industries Investment Co. (23), National Investment Co. (29), Asan Pardakht Persian (34), Telecommunication Company of Iran (44), MAPNA Group (48)	•_٣١٥
5	Petrochemical	Omid Investment Co. (10), Jam company (13), Pardis Petrochemical Co. (16), Mobin Petrochemical Co. (18), Shazand Petrochemical Co. (26), Middle East Bank (27), Kermanshah Petrochemical Ind. (38), Iran Khodro (40), Persian Gulf Fajr Energy Co. (51)	•_٣•٧
6	Pharmacy	Dr. Abidi Pharmacy (19), Carton Iran (30), Pars Oil (33), Bahman Group (35), Zahravi Pharmaceutical Co. (39), Tehran Stock Exchange (43), Iranian Aluminium Co. (52)	•_77£
7	Investment	National Iranian Copper Industries Co. (2), Tamin Petroleum & Petrochemical Investment Co. (7), Ghadir Investment Co. (9), Islamic Republic of Iran Shipping Line Group (12), National Development Investment Group (17), Tamin Pharmaceutical Investment Co. (24), Shiraz Petrochemical Co. (25), Iran Transfo (31), Mobarakeh Steel Co. (49)	•.٢٠٠

Considering that only the food companies in the list of 52 companies i.e. Glucosan and Pars Minoo Industrial Co. were in the first group, we named this group Food Industry. A similar argument is made about the Pharmacy group. The nomination of other groups is selected according to the number of dominant companies in that group that have the same field of activity.

2. Assortativity

The assortativity coefficient of grouping was 0.897. This value indicates that the grouping performed has a high-resolution quality.

3. Central Indexes

Table 3 shows the average of the central indexes for the classified groups in

Table 2. The highest node strength is related to the first group (Food Industry) and the highest node degree, betweenness centrality, and, closeness centrality is related to the third group (Steel). Table 4 also shows the top five companies in each central index. As can be seen, Shazand Petrochemical Co. is among the top 5 companies in three of the four central indexes. Bandar Abbas Oil Refinery and Iran Khodro Investment Development Co. are also among the top five companies in two of the four central indexes.

Group	Node Degree	Node Strength	Betweenness Centrality	Closeness Centrality
1	۲,۰۰۰	1,071	747	•,717
2	1,407	١,٠٥٠	41	۰,۱۹۱
3	7,789	1,707	390	•,749
4	١,٨٧٥	۰,۹۷۸	۵۹	•,7 • •
5	۲,۰۰۰	1,199	191	•,140
6	1,407	1,.79	Ŷ٨	•,190
7	١,٨٨٩	•,٨٥١	99	•,197

Table 3. Average central indexes of groups

Rank	Node Degree	Node Strength	Betweenness Centrality	Closeness Centrality
1	Bandar Abbas Oil Refinery	Shazand Petrochemical Co.	Iran Khodro Investment Development Co.	South Kaveh Steel Co.
2	Mobarakeh Steel Co.	Khouzestan Steel Co.	Iranian Investment Petrochemical Group	Mobin Petrochemical Co.
3	Mobile Telecommunication Company of Iran	Bandar Abbas Oil Refinery	Shazand Petrochemical Co.	Persian Gulf Fajr Energy Co.
4	National Development Investment Group	Parsian Oil and Gas Development Group	Carton Iran	Telecommunication Company of Iran
5	Shazand Petrochemical Co.	Iran Transfo	Pars Minoo Industrial Co.	Iran Khodro Investment Development Co.

Table 4. The first 5 companies in the central indexes

Discussion and Conclusion

In the study, the impact of the selected 52 companies from the Tehran Stock Exchange (based on market value) on each other in the period from June 2017 to October 2020 was examined. The mathematical tool used in this study was the lower tail dependence of companies. This quantity was calculated using the GARCH(1,1) model and the Clayton copula. By obtaining the lower tail dependence of the companies, their interaction graph was obtained. By drawing the minimum spanning tree from the interaction graph, the existing companies were divided into different groups based on their impacts on each other. The assortativity coefficient of the minimum spanning tree in this division was 0.897, which indicates the appropriate resolution of the groups. According to the results, it can be seen that the companies in the first (Food Industry) and second (Oil Refinery) groups have the greatest impact on other companies in the period under review. Also, companies in the sixth (Pharmacy) and seventh (Investment) groups have the least impact on other groups. By calculating the central indexes, it was observed that the third group (Steel) had the highest average in three indexes (node degree, betweenness centrality, and, closeness centrality) of the four studied indexes. Also, Shazand Petrochemical Co., Bandar Abbas Oil Refinery, and, Iran Khodro Investment Development Co. were among the first companies in the central indexes.

Based on the above results, the policy implications of this article are as follows:

- a. By systematically categorizing companies based on lower tail dependencies, regulators can apply different protection policies to different groups in times of financial crisis.
- b. By identifying key nodes with respect to central indexes, financial regulators can effectively monitor to reduce the spread

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest concerning the research, authorship and, or publication of this article.

Funding

The authors received no financial support for the research, authorship and, or publication of this article.

References

- Ardalankia, J., Osoolian, M., Haven, E., & Jafari, G. R. (2020). Scaling features of price-volume cross-correlation. Physica A: Statistical Mechanics and Its Applications, 124111.
- Bonanno, G., Caldarelli, G., Lillo, F., & Mantegna, R. N. (2003). Topology of correlation-based minimal spanning trees in real and model markets. Physical Review E, 68(4), 46130.
- Chakraborti, A., Toke, I. M., Patriarca, M., & Abergel, F. (2011). Econophysics review: I. Empirical facts. Quantitative Finance, 11(7), 991–1012.
- Eng-Uthaiwat, H. (2018). Stock market return predictability: Does network topology matter? Review of Quantitative Finance and Accounting, 51(2), 433–460.
- Kwon, O., & Yang, J.-S. (2008). Information flow between stock indices. EPL (Europhysics Letters), 82(6), 68003.
- Lee, S.-W., & Hansen, B. E. (1994). Asymptotic theory for the GARCH (1, 1) quasimaximum likelihood estimator. Econometric Theory, 29–52.
- Mantegna, R. N. (1999). Hierarchical structure in financial markets. The European Physical Journal B-Condensed Matter and Complex Systems, 11(1), 193–197.
- Nobi, A., Maeng, S. E., Ha, G. G., & Lee, J. W. (2014). Effects of the global financial crisis on network structure in a local stock market. Physica A: Statistical Mechanics and Its Applications, 407, 135–143.
- Osoolian, M., & Koushki, A. (2020). Investigating the Crisis Forecasting Ability of the Cumulative Residual Entropy Measure by using Logistic Map Simulation Data and Tehran Stock Exchange Overall Index. -Journal of Financial Management Perspective, 10(31), 9–27. https://doi.org/10.52547/jfmp.10.31.9
- Patro, D. K., Qi, M., & Sun, X. (2013). A simple indicator of systemic risk. Journal of Financial Stability, 9(1), 105–116.
- Peralta, G., & Zareei, A. (2016). A network approach to portfolio selection. Journal of Empirical Finance, 38, 157–180.
- Wang, G.-J., & Xie, C. (2016). Tail dependence structure of the foreign exchange market: A network view. Expert Systems with Applications, 46, 164–179.
- Wang, G.-J., Xie, C., & Stanley, H. E. (2018). Correlation structure and evolution of world stock markets: Evidence from Pearson and partial correlation-based networks. Computational Economics, 51(3), 607–635.
- Wen, F., Yang, X., & Zhou, W. (2019). Tail dependence networks of global stock markets. International Journal of Finance & Economics, 24(1), 558–567.
- Wiliński, M., Sienkiewicz, A., Gubiec, T., Kutner, R., & Struzik, Z. R. (2013).

Structural and topological phase transitions on the German Stock Exchange. Physica A: Statistical Mechanics and Its Applications, 392(23), 5963–5973.

Yang, X., Wen, S., Zhao, X., & Huang, C. (2020). Systemic importance of financial institutions: A complex network perspective. Physica A: Statistical Mechanics and Its Applications, 545, 123448.

Bibliographic information of this paper for citing:

Osoolian, Mohammad; Hosseiny Esfidvajani, Seyed Ali & Ramezani, Masoome (2023). Investigating the Importance of Different Companies of Tehran Stock Exchange using Lower Tail Dependency based Interaction Network. *Iranian Journal of Finance*, 7(1), 1-20.

Copyright © 2023, Mohammad Osoolian, Seyed Ali Hosseiny Esfidvajani and Masoome Ramezani

Appendix 1: Copula

The copula has the following properties:

- The copula $C(u_1, u_2, ..., u_d)$ is a non-descending function of any variable u_i .
- If all variables of the copula are equal to one, except one variable, then the value of the copula is equal to that variable. In other words, C(1,1,...,1,u_i, 1,...,1) = u_i.
- For each $a_i \le b_i$ the copula *C* holds in the following rectangular inequality:

$$\sum_{i_1=1}^2 \sum_{i_2=1}^2 \dots \sum_{i_d=1}^2 (-1)^{i_1+i_2+\dots+i_d} C(u_{1,i_1}, u_{2,i_2}, \dots, u_{d,i_d}) \ge 0,$$

where $u_{i,1} = a_i$ and $u_{i,2} = b_i$.

The third property arises from the positivity of the probability $Pr[u_1 \in [a_1, b_1], u_2 \in [a_2, b_2], ..., u_d \in [a_d, b_d]]$. To better understand this feature, the following two variables example can be useful.

$$\begin{aligned} \Pr[u_1 \in [a_1, b_1], u_2 \in [a_2, b_2]] \\ &= \Pr[u_1 \le b_1, u_2 \in [a_2, b_2]] - \Pr[u_1 \le a_1, u_2 \in [a_2, b_2]] \\ &= (\Pr[u_1 \le b_1, u_2 \le b_2] - \Pr[u_1 \le b_1, u_2 \le a_2]) \\ &- (\Pr[u_1 \le a_1, u_2 \le b_2] - \Pr[u_1 \le a_1, u_2 \le a_2]) \\ &= (-1)^{1+1} \Pr[u_1 \le a_1, u_2 \le a_2] \\ &+ (-1)^{2+1} \Pr[u_1 \le b_1, u_2 \le a_2] \\ &+ (-1)^{1+2} \Pr[u_1 \le a_1, u_2 \le b_2] \\ &+ (-1)^{2+2} \Pr[u_1 \le b_1, u_2 \le b_2] \\ &= (-1)^{1+1} C(a_1, a_2) + (-1)^{2+1} C(b_1, a_2) + (-1)^{1+2} C(a_1, b_2) \\ &+ (-1)^{2+2} C(b_1, b_2) \ge 0. \end{aligned}$$

The reverse is also true. In other words, any function C: $[0,1]^d \rightarrow [0,1]$ that holds in the above three properties is a copula. It can also be easily shown that if $C(u_1, u_2, ..., u_d)$ is a d-dimensional copula, then $C(1, u_2, ..., u_d)$ is a (d - 1)-dimensional copula.

In the following, we state the important Sklar theorem on copulas by proving two simple lemmas.

Lemma 1: If $X \sim U[0,1]$ then $F_X(x) = x$.

Proof:
$$F_X(x) = \Pr[X \le x] = \int_0^x P_X(x) dx = \int_0^x 1 dx = x$$

Lemma 2: If $Y = F_X(X)$ then $Y \sim U[0,1]$.

Proof: $F_Y(y) = \Pr[Y \le y] = \Pr[F_X(X) \le y] = \Pr[X \le F_X^{-1}(y)] = F_X(F_X^{-1}(y)) = y.$

Sklar Theorem: If $X = \{X_1, X_2, ..., X_d\}$ is the set of d random variables with CDFs given by F_i , then there exists a copula C, such that:

$$F(x_1, x_2, ..., x_d) = C(F_1(x_1), F_2(x_2), ..., F_d(x_d)),$$
(19)

where F is the joint CDF of the set X:

$$F(x_1, x_2, ..., x_d) \coloneqq \Pr[X_1 \le x_1, X_2 \le x_2, ..., X_d \le x_d].$$
(20)

As mentioned, the copula is a function for calculating the joint CDF of several random variables. Similarly, copula density is a function for calculating the joint PDF of several random variables. If C(u, v) is the copula of two random variables, then the copula density of these two random variables c(u, v) is defined as follows:

$$c(u,v) = \frac{\partial^2 C(u,v)}{\partial u \, \partial v}.$$
(21)

The joint PDFof the two random variables X and Y is related to their copula density as follows:

$$P_{XY}(x,y) = c(u,v) P_X(x) P_Y(y),$$
(22)

where $u = F_X(x)$ and $v = F_Y(x)$.

Proof:
$$P_{XY}(x, y) = \frac{\partial^2 F_{XY}(x, y)}{\partial x \, \partial y} = \frac{\partial^2 C(u, v)}{\partial u \, \partial y} \frac{\partial F_X(x)}{\partial x} \frac{\partial F_Y(y)}{\partial y} = c(u, v) P_X(x) P_Y(y).$$

Error! Reference source not found. lists some well-known two-variable copulas with their densities. The parameters used in these copulas can be obtained from the time series of random variables using the MLE method.

Copu la	<i>C</i> (<i>u</i> , <i>v</i>)	<i>c</i> (<i>u</i> , <i>v</i>)	Paramete r
Norm al	$= \Phi_{2}(\Phi^{-1}(u), \Phi^{-1}(v); \varrho),$ where $\Phi_{2}(h, k; \varrho)$ $= \int_{-\infty}^{h} \int_{-\infty}^{k} \phi_{2}(x, y; \varrho) dy dx,$ $\phi_{2}(x, y; \varrho)$ $= \frac{1}{2\pi\sqrt{1-\varrho^{2}}} \exp\left(-\frac{x^{2}-2\varrho xy+y^{2}}{2(1-\varrho^{2})}\right),$ $\Phi(h) = \int_{-\infty}^{h} \phi(x) dx,$ $\phi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right).$	$= \frac{1}{\sqrt{1-\varrho^2}} \exp\left(-\frac{(a^2+b^2)\varrho-2ab\varrho}{2(1-\varrho^2)}\right)$ where $a = \sqrt{2} \operatorname{erf}^{-1}(2u-1),$ $b = \sqrt{2} \operatorname{erf}^{-1}(2v-1),$ $\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z \exp(-t^2) dt.$	<i>ℓ</i> € [−1,1]
FGM ¹	$= uv[1+\theta(1-u)(1-v)].$	$= 1 + \theta(2u - 1)(2v - 1).$	$\theta \in [-1,1]$
Frank	$= -\frac{1}{\theta} \log \left(1 + \frac{(\exp(-\theta u - 1))(\exp(-\theta v - 1))}{\exp(-\theta) - 1} \right).$	$= \frac{\theta \exp(\theta(u+v))(\exp(\theta)-1)}{(\exp(\theta)-\exp(\theta u)-\exp(\theta v)+\exp(\theta(u+v)))}$	$\theta \in \mathbb{R} \setminus \{0\}$
Clayt on	$= \left(\max\{u^{-\theta} + v^{-\theta} - 1; 0\}\right)^{-\frac{1}{\theta}}.$	$= (1+\theta)(uv)^{-1-\theta} \left(u^{-\theta} + v^{-\theta} - 1\right)^{-2-\frac{1}{\theta}}.$	$\theta \in (-1,\infty) \setminus \{0\}$

Table 6. Some two-variable copulas with their densities

The LTD of two random variables with Clayton copula is as follows:

$$\lambda_l = 2^{-\frac{1}{\theta}}.$$
(23)

Appendix 2: Companies' Names

¹ Farlie-Gumbel-Morgenstern

Number	Company	
01	Mobarakeh Steel Co.	
02	National Iranian Copper Industries Co.	
03	Isfahan Oil Refinery	
04	Tehran Oil Refinery	
05	Bandar Abbas Oil Refinery	
06	Mobile Telecommunication Company of Iran	
07	Tamin Petroleum & Petrochemical Investment Co.	
08	Parsian Oil and Gas Development Group	
09	Ghadir Investment Co.	
10	Omid Investment Co.	
11	Khouzestan Steel Co.	
12	Islamic Republic of Iran Shipping Line Group	
13	Jam company	
14	Tabriz Oil Refinery	
15	Informatics Services Co.	
16	Pardis Petrochemical Co.	
17	National Development Investment Group	
18	Mobin Petrochemical Co.	
19	Dr. Abidi Pharmacy	
20	Golrang Industrial Group	
21	Glucosan	
22	Civil Pension Fund Investment	
23	Iran Chemical Industries Investment Co.	
24	Tamin Pharmaceutical Investment Co.	
25	Shiraz Petrochemical Co.	
26	Shazand Petrochemical Co.	
27	Middle East Bank	
28	Behran Oil Co.	
29	National Investment Co.	
30	Carton Iran	
31	Iran Transfo	
32	Pars Minoo Industrial Co.	
33	Pars Oil	
34	Asan Pardakht Persian	
35	Bahman Group	
36	Iran China Clay Ind.	
37	Iran Alloy Steel Co.	
38	Kermanshah Petrochemical Ind.	
39	Zahravi Pharmaceutical Co.	
40	Iran Khodro	
41	Iran Khodro Investment Development Co.	
42	Sepahan Oil Co.	
43	Tehran Stock Exchange	
44	Telecommunication Company of Iran	
45	Khark Petrochemical Co.	

19

20	Iranian Journal of Finance,	2023,	Vol.	7, No. 1 (Osoolian,	M.)

46	Shahid Ghandi Production Factories Co.
47	South Kaveh Steel Co.
48	MAPNA Group
49	Mobarakeh Steel Co.
50	Iranian Investment Petrochemical Group
51	Persian Gulf Fajr Energy Co.
52	Iranian Aluminium Co.